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1, INTRODUCTION

This is one of a series of reports which define parameters affect-
ing the transmission of shock waves and quasi-static gas flow through
vented plates, References 1 and 2 describe the infiuence on shock wave
atteniation by target test plates as a function of vent area, size,
and number of holes.

Results are reported here for the rate of decay of chamber pressure
as a function of venting. Various hole sizes were used in the attenu-
ator plates to control the rate of flow from the containment chamber.
The overpressure versus time recorded in the chamber documents the rate
of gas venting as a furction of vent area and chamber volume.

A. Background.

A basic requirement under one phase of the Army's program to
modernize munition production facilities was to develop a base of gen-
eral knowledge pertinent to the design of suppressive shields being
considered for the containment of blast and fragments generated from
accidental explosions.

When an internal explosion occurs the blast wave reflects and
re-reflects and as unburned detonation products combine with available
oxygen, a gas pressure rise occurs. This gas pressure is often referred
to as the quasi-static pressure because it can last long enough to
apply essentially a static internal gas pressure load to the structure.
The rate of decay of the quasi-static pressure is a fun-tion of the
structure volume and vent area. Therefore, an understanding of the
venting process is needed to determine the internal loading of a
structure, in order to better design structures to resist the effects
of accidental explosions.

B. Objectives.

The objectives of the experiments conducted in this program werc
(1) to determine the effect of known vent areas on the decay rate of
venting gas as it flows from a containment chamber, (21 to compare the
results with other experimental and theoretical work, oid (3) to deter-
mine the effective vent ara of multiple plates from results obtained on
single plates with known vent areas.

1. Charles Kingery and George Coulter, "Shock Wave Attenuation b"
Single Perforated Plates," Ballistic Research Laboratory Memo-
randwn Report No. 2664, August 1976. (AD #B013764L)

2. C. Kingery, R. Pearson, ard G. Coulter, "Sqhock Wave Attenuat-i,
by Perforated Plates With Various Hole Sizes," BRL Memo Report
No. 2757, June 1977. (AD #A041854)
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II. EXPERIMENTAL PROCEDURE

The detaiIs of the vented plates and the experimental setup are
presented in this section,

A. Instrumentation.

The instruientation consisted of pTessure transducers, oscilloscopes,
and still cameras. The overpressure decay versus time was recorded using
piezo-electric transducers, Susquehana Instruments Company Model ST-4,
with Kestler Model 566 charge amplifiers. The output voltage from the
transducers and charge amplifiers were fed into Tektronix Model 502-A
oscilloscopes where the display was photographed, giving a permanent
record. The voltage-time records were put into digital form, then
engineering units were calculated and results plotted as shown in the
Results Section.

B. Lontainment Chamber.

The driver section of the 10.2 cm shock tube was chosen as the
containment chamber because of its simple operation and ease of instru-
mentation. A sketch of the portion of the tube used for this experi-
ment is presented in Figure 1. Note that the target vent plate wAs
placed next to the compression chamber and followed by the containment
diaphragm.

C. Vented Targets.

Several, vent plates were manufactured so that both hole size and
number of holes could be varied during the test series. Plate vent
area (A v) was varied from I to SO percent of the completely unobstructed

tube cross section (A. = 103 percent).

Both single vent plates and multiple plates (with 1/4-inch spacers)
were clamped at the mouth of the driver chamber as shown in Figure 1.
Two test series were conducted where the chamber was pressurized with
helium to approximately 827 kPa (120 psi) and 2413 kPa (350 psi) over-
pressure. The diaphragm was ruptured and the gas vented through the
plates. The decay of pressure versus time within the chamber was
recorded during this process.

Sketches of the vent plates are given in Figure 2 showing the hole
sizes and locations. Combined plates were stacked so the flow did not
have a direct line of sight path through the stack. The stacked plates
were clamped at the same locption as were the single plates. All stacked
plates had 1/4-inch spacers between them as shown in Figure 1. All
plates were 1/4-inch thick. One slotted plate was Also tested.

A sketch of a nested I-beam, Target 11, as shown in Figure 2. was
also exposed.

10
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III, RESULTS

A-series of tests was run with various vent plates clamped at the

elit opening of h.gas filled chamber. Chamber overpressure levels of

approximately 827.kPa (120 psi) and 2413 kPa (350 psi) of helium gas

were used for the tests. The test matrix for the single plates with

pertinent information is listed in Table I. The plates were designed
with hole sizes in English units. For convenience and ease of pre-

sentation they are presented in the table as such, since the percentage

of vented area to the total area of the shock tube cross-section would

remain the same in any set of units. The ratios of the area vented
(A v ) to the volume (V) of the chamber are presented in both English

and SI units. Information on multiple plates and other configurations
are listed in Table TI.

TABLE I. Data on Single Plate Vent Targets.

Shot Target Hole Percent A /V Chamber
No. No. Diameter Open I Pressure

in. ft-  m I  kPa

244 1 0.40 1.00 .010 .0328 2413
255 2 1.56 1.96 .020 .0643 2413
239 3 0.90 5.06 .051 .1662 2399
241 4 1.25 9.77 .098 .3205 2427
246 5 2.00 25.00 .250 .8206 2413
27t, 6 2.81 49.35 .494 1.619 2406

4.00 100 1.00 3.282 2413
262 3 0.90 5.06 .051 .1662 827
268 5 2.00 25.00 .250 .8206 820
270 6 2.81 49.35 .494 1.623 814

Ratio AviV = Area Vented/Volume of Chamber

Percent 3en = Vent Area/Unobstructed Tube Area x 100

Chamber Volume = .0tI47 m
3 (.08727 ft 3)

100 percent. Open = .00811 m2 (.08727 ft2)

Percent Open X 0.0328 m A /V m

13



TABLE It. Data on Myltiple Plate Vent Targets

Shot Target Number'of Holes Number of Each Plate
No No and Size Plates Vent Area Percent Opening

3

186 7 16 -1/2.in. 2 .0020 25

260 8 16 - 1/2 in. 3 .002C 25

352 9 S - 1/2 in. 4 .0006 7.8

2S7 1C 0.2 in. slots, spaced n.6 in. .0021 26

252 11 model - nested I-beams - -

A. Single Plate Venting.

The decay of overpressure with time, in the compression chamber,
for Target Plates 1 through 6 is presented in Figure 3 for a chamber
pressure of 2413 kPa (350 psi). Note that as the vent area (Av) in-

creases the duration of the gas pressure decreases. The curves are
identified by both the percentage of the tube cross section open and
the ratio of vented area (A ) to the volume (V) of the chamber. These
decay curves will be used t8 establish the effective vent areas of
other targets as well as determine equations to describe the phenomenon
of gas flow and venting from pressurized chambers.

The decay of overpressure versus time for Target Plates 3, 5, and
6 is presented in Figure 4 for a starting chamber pressure of 827 kPa
(120 psi).

The chamber pressure decays versus time presented in the curves
from Figure 3 have been cross-plotted in Figure 5 as decay timz versus
vent area percent for constant chamber pressures. This figure can he
used to determine the effective vent area of multiple plates, slotted
plates.and nested I-beams subjected to the same initial chamber pres-
sure. The percent of the target plate open multiplied by 0.03282
m-1 , equals A v/V m -1.

B.. Multiple Plate Venting.

Data on targets tested other than single plates with holes, are
presented in Table 1I. This section will discuss the effectiveness of
multiple plates, establish effective vent areas, and check proposed
methods of predicting effective vent areas. The chamber pressure decay

14
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versus time for Targets 7, 8, and 9 are prt.sented in Figure 6. By
matching the chaxlber pressure decay rate with the data plotted in
Figure 5, it was determined that Target Plates 7, 8, and 9 had effective
vent areas 18.0, 14.4. and 4.1 percent relative to single plate vent
area percent. The ratios A /V for Target Plates 7, 8, and 9 arv 0.5910,
0.4726, and 0.1346 a-l 

C. Slotted Plato Venting.-

The slotted plate is noted as Target Plate 10 in Figure 2. The
chamber pressure decay versus time is plotted in Figure 7. Comparing
the chamber pressure decay plotted in Figure 7 with the family of
curves in Figure 5 an average effective vent area was determined to be
27 percent. The designed percent of area vented was 26 percent. This
would imply that the slotted plate was as efficient in blast attenuation
as a plate of the same vent area consisting of holes. The ratio of
vent area A to volume V is 0.8861 m-1 .

v

D. Nested I-Beam Venting.

The nested I-beam, Target 11, was of interest because it was one
of the wall configurations considered for a full scale test of the
suppressive structure concept. Tests were conducted at the BRLO on
a 1/4 scale model of a proposed structure utilizing walls of nested
I-beams. Target 11 was a 1/16 scale of the proposed full .ize con-
figuration. The chamber pressure decay versus time for a ;tatic
pres.sure of 2413 kPa (350 psi) is presented in Figure 8. When the
pressure versus time from Figure 8 is compared with the vent area plot
for single plates in Figure 5 an effective vent area of b.1 percent
was estimated. The 8.1 percent of the plate area vented would give
a A v/V ratio of 0.2658m-1.

IV. CORRELATION WITH OTHER WORK

There are many reports relating to internal explosions, but results
applying more. directly to the problem addressed in this report are noted
in References'4 and 5. In both Reference 4 and 5 equations were
established to describe the deca/' of internal pressure for various vent-
ing conditions using the chamber volume as one of the parameters.

3. R. Schumacher, C. Kingery, W. Ewing, "Airblast and Structural
Response Testing of a 1/4 Scale Categcry I Supprescioe Shield,"
BRL Memo. Report 2623, May 1976. (AD #BO11616L)

4. W.A. Keenan and J.A. Tamareto, "Blaat Envirowaent from Fully
and Partially Vented Exploaions in Cubicles". Civil Enginecring
Laboratory Tech Report 51-027, Feb. 1974.

5. C.F. Kinney and R.C. Sewell, "Venting of Explosion," NWC TEch.
Memo. Rcort 2488, Naval Weapons Center, CA, July 1974.
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A. Chamber Pressure Decay-Function of Vent Area and Volume.

The volume of the compression chmber remained constant (v =
.00247 r3 or .08727 ft ) through the 3eries of tests. Since the
chamber pressure decay appeared to be exponential, the data were used
to establish an equation in Ahe form of

P = p e- c()t .(1)
t II

where Pt = overpressure in the chamber at ime t,
P = chamber pressure at time, t=0,
m

C = empirically determined constant, 0.840, n/1"

A = area vented, m2
V

V = chamber volume, m3 , and

t = time, milliseconds, ms.

NOTE: Overpressure may be kPa or psi.

Using Equation 1, chamber pressure decays versus time were calcu-
lated for the target plates described in Table I that were exposed to
a 2413 kPa (350 psi) chamber pressure. These calculations are pre-
sented in Figure 9, along with experimental data points. Using
Equation I to calculate the chamber pressure decay versus time implies
an infinite duration because of the asymptotic approach to zero over-
pressure. The impulse calculated using Equation 1 is approximately one
percent greater than would be obtained from the recorded pressure decay
versus time to zero overpressure.

One method for determining the time (tg) for the chamber pressure
to reach atmospheric pressure is to refer to Figure 5 in which decay
time is plotted as a function of percent of target plate vented. Frm
Table I this can be converted to area vented, Av, divided by chamber

volume, V, in meters-1 . An equation describing the time (tg) for the
gas pressure to decay to ambient conditions or zero overpressure is

tg = 6.4(Av/V)09 5 , (2)
- l

where A v/V is metres , and tg is milliseconds.

2
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Using Equation 2 to determine the time (tg) required for the
chamber pressure to decay to ze;o overpressure, and Equation 1 to
describe the chamber pressur- decay versus time out to time (tg),
will give a good representationi of the ch!i.ber pressure decay phenomenon.
Impulse calculated using this method will be less than one -cent smaller
than impulse calculated us'!g Equation I alone. Equations md 2 were
developed from results obtained fron, experiments using a cl ber pressure
of 2413 kPa (350 psi.).

B. Chamber Pressure Decay Ratios,

A second way to correlate the results is to plot the chamber
pressure decay as a ratio of overpressure (P ) at time (t) divided by
the maximum chamber pressure (Pm) as a function of a scaled delay time
of (A /V)t. This plot is presented in Figure 10. A least squares fit
to th data gave the following equation:

log (Pt/Pm) = - .365 (A /V)t, (3)
-l

where A /V is metres ana is in milliseconds.

Using the chamber pressure decay versus time, an effective vent2area in metres can be obtained for multiple plates as well as other
target configurations by rewriting Equation 3 as follows:

IPt Vt
Av  log t -.365 (3a)

m

Equation 3 was also found valid for the tests conducted with a maximum
chamber pressure of 827 kPa (120 psi). This equation has the same
limitation as Equation 1 in that it will not give a zero overpressure
or duration of the gas pressure but as shown in Figure 10 it is valid
at overpressures as small as 1 percent of the maximum chamber pressure
(Pm).

The scaled decay for chamber pressure ratio was found experimentally
to follow a negative slope of .365 metres per milliseconds. A com-
parison is made in Figure 11 between the chamber pressure decay versus
time using the venting equation developed in Reference 5 from theo-
retical considerations and Equation 3 derived from experimental data.

The equation from Reference 5 is:

log Pt = log P - 0.3 15(A/V t, (4)

where P and P are absolute pressures in atmospheres, A /V is the vent
t m -lV

area to chamber volume in metres and t is in milliseconds. The

26
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experimental decay data for a chamber filled with helium gas follows
the proposed pressure decay curve of a chamber filled with hot explosive
gases well enough to allow accurate predictions to be made for full-
size suppressive structure panels.

C. Scaled Blow-Down Time.

Blow-Down time is a term used in Reference 6 to describe the time
required for the chamber overpressure to decay to atmospheric pressure.
An equation was developed which depended on maximum chamber pressure,
vent area, and chamber volume, The equation is as follows:

tg =(A )3/2

p 1/6 V1 /3 (

m

where P = chamber pressure, psi,

V = chamber volume, ft,

A = vent area, ft 2, and

tg = blow-down time, ms.

Figure 12 is a plot of tgkm1/6 vl/3)versus Av3 /2/V. Also presented
in Figure 12 are the blow-down times obtained from this series of tests.
The data points lie above the computed cuirve but are within the
scatter of experimental results obtained from vented structures and
high explosives.

In Reference 4, Keenan and Tamareto developed an equation to
describe the duration of the gas overpressure in vented structures.
The results wore based on the firing of high explosive in chambers with
known vent areas and volumes. The equation is:

tg/w 1/3 = 2.26 (A vwl/3/V)-0.86 (6)

If we set charge weight w equal to 1, then

tg - 2.26 (A /V)- 0.86 v (7)

7 r-. w a& ,P.,3. Weetine, "Methods of Predicting Blast Loads
In ide and Blast Fields Outside Suppressive Structures," Edgewood
Arsenal Contractor Report EM-CR-76026, Nov. 1975.
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where tg = blow-down time, ms,

A = vent area, ft 2 , and
V. 3

V = volume, ft

Note that this equation is very similar to Equation 2 with exception
of the negative slope. Blow-down times cal :jlated from Equation 7 are :
lower at the smaller vent areas than were obtained from Equation 2.

D. Multiple Plate Venting Predictions.

The chamber pressure decays for single plate targets with various
vent areas have been measured and correlated with other investigations.
Multiple plates targets have also been exposed and effective vent areas
have been determined relative to 3ingle plate targets. One method,
suggested in Reference 5 for predicting the effective vent area, A
Lor a multiwalled structure was to assume that V v'

- + -- + + - a
leff a 2 n

where n number of elements in a suppressive structure panel,

Vented Area
. Plate Area , for each target element, and

Sa x Plate Area (.00811m 2 or .08727 ft2.
v eff

This equation is used to calculate the effective vent area for
Target Plates 7,8,9 and 11 and the results are listed in Table III.
It can be seen in Table III that the aff calculated from Equation 8

imply that the multiple plates are more efficient in containing the
chamber pressure than the measured values would indicate. If Equation
8 is modified as follows:

1 1. 5 .25 + .125+, (9)
a a a a C

eff '1 2 3 4

then the predicted values from Equation 9 show a much better correlation
with the measured values of a than those predicted from Equation 8,
as shown in Table III.

E. Multiple Plate Spacing.

One experiment was conducted to determine the effect of spacing
between plates on the effective vent area. One test was conducted
with two 1/4 inch thick plates having 16 - 1/2 inch holes and a
1/4 inch separation. This is presented as Target Plate 7 in Figure 6.
A second test was conducted with the same plates but with a 1/2 inch
separation. The chamber pressure decay versus time recorded from the
two tests are presented in Figure 13. The data points fall well

31
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'ABLE III, Comparison of Measured and Predicted Effective Vent Areas.

Target aff Target Plate
Plate Measured Predicted Predicted Description

Eq. 8 Eq. 9

7 0.180 0.125 0.166 2 Plates 16-1/2" holes
a = ,25 each

8 0.144 0,083 0.143 3 Plates 16-1/2" holes
a = .25 each

9 0.041 0.019 0.042 4 Plates 5-1/2" holes
a = .078 each

11 0.081 0.037 0.083 Nested I-beams

within the scatter that might be expected from two similar tests. It
can be concluded that there was no difference in the chamber pressure
decay versus time when the spacing was increased from 1/4 inch to 1/2
inch.

F. Comparison With Field Tests.

The true worth, of prediction techniques developed from computer
programs or laboratory experiments, is determined when they can be
compared with reliable field test results. The decay of quasi-static
pressure versus time was recorded on a series of field tests for a
number of charge weights and vent areas, and are reported in Reference
3. Based on the average vent area (Av) listed in Table X of Reference
3 for Shots 191, 194,and 196 which were 2.685, 1.171, and .3633m 2 , the
decay of chamber ressure versus time was calculated for the structure
volume of 28.15 m using Equation 1. The calculated points from
Equation 1 are plotted in Figures 14, 15, and 16, to show the com-
parison of field test records and the calculated values from Equation
1.

A similar comparison is made in Figures 17, 18, and 19. Here the
calculations from Equation 1 are compared with the records of over-
pressure versus time obtained from a series of field tests described
in Reference 7.

7. Charles Kingery, R. Schumacher, W. Ewing, "Internal Pressure from
Explosions in Suppressive Structures," BRL Memo. Report (in
publication).
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In Figure 19. niong with calculations from Equation 1, there are
also data point5 calculated from Equation 4 (Sewell and Kinney) and

from Proctqr's code described in Reference 8, The correlation between
the tk..ee methods for computing the chamber pressure versus time is
m,:.n better than could be expected since in the field tests the chambeis
were filled with hot gases and detonation products wiile the shock tube
compression chamber was filled with helium gas, The chamber volume of
the 1/4 scale structure described in Reference 3 is over 11,000 times
the volume of the shock tube compression chamber.

V. CONCLUSIONS

A series of experiments were conducted in which the chamber pres-
sure decay versus time through vented plates was recorded within a
chamber pressurized with helium gas. The effect of known vent areas
on the pressure decay rate was documented.

A comparison of the results with other experimental and analytical
work was made and the conclusions are that a good simulation of hot
explosive gases venting through suppressive structure panels was
obtained.

Effective vent areas were established for selected multiple plates

and model I-beams. An equation was developed for predicting the effec-
tive vent area for multiple walls of complex suppressive structures.

The results obtained from this experimental program have shown
thac a relatively simple and economical test program can provide answers
to the complex questions of gas flow through proposed suppressive
structure walls and panels.

It is believed by the authors that the equations developed in this
report can be used to describe the venting of gases from pressurized
containers as well as accidental explosions in containment structures.

8. Proctor, J.F., "Internal Blast Dcmage Mechanisms Computer Program,"
61JCG/MS-3-. 10 April 1973.
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